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Abstract 15 

Many operational drought indices focus primarily on precipitation and temperature when 16 

depicting hydroclimatic anomalies, and this perspective can be augmented by analyses and 17 

products that reflect the evaporative dynamics of drought. We leverage the linkage between 18 

atmospheric evaporative demand (E0) and actual evapotranspiration (ET) in a new drought index 19 

based on E0—the Evaporative Demand Drought Index (EDDI). EDDI measures the signal of 20 

drought through the response of E0 to surface drying anomalies that result from two distinct land 21 

surface-atmosphere interactions: (1) a complementary relationship between E0 and ET that 22 

develops as moisture becomes limited at the land surface, leading to ET declining and increasing 23 

E0, as in sustained droughts; and (2) parallel ET and E0 increases arising from increased energy 24 

availability leading up to surface moisture limitation, as in flash droughts. To calculate EDDI 25 

from E0, we use a long-term, daily reanalysis of reference ET (ET0) estimated by the ASCE 26 

Standardized Reference ET equation using radiation and meteorological variables from the North 27 

American Land Data Assimilation System phase-2 (NLDAS). EDDI is derived by normalizing 28 

aggregated ET0 anomalies from climatologic means across a user-specific time period. Positive 29 

EDDI values then indicate drier than normal conditions and the potential for drought. EDDI is 30 

thus a physically based, multi-scalar drought index that that can serve as an indicator of both 31 

flash and sustained droughts, in some cases offering early warning relative to current operational 32 

drought indices. 33 

1. Introduction 34 

Drought severely affects society, ecology, and economies, with impacts felt across sectors 35 

and hydrologic and political boundaries at time scales that vary from weeks to years. Physically, 36 
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it is manifest as deficits in moisture fluxes and storages, including precipitation (Prcp) in 37 

meteorological drought; streamflow (Runoff) and surface storage depletion in hydrologic 38 

drought; and, traditionally, ET and soil moisture (SM) in agricultural drought. Agricultural and 39 

meteorological droughts are also evinced as a surplus in atmospheric evaporative demand (E0, 40 

also sometimes referred to as “potential evaporation”). E0 physically integrates radiative and 41 

advective forcing variabilities and, further, reflects water availability through land surface-42 

atmosphere feedbacks. As such, it can serve as an independent drought indicator without 43 

conversion to ET through parameterizations of soil-water and plant-water availabilities that may 44 

be of questionable value on operational space and time scales. 45 

The current iteration of the United States Drought Monitor (USDM) relies heavily on Prcp 46 

and air temperature (Tair) data to derive drought category assessments and other ancillary 47 

products such as surface moisture fluxes. E0 is used only in implicit manner to derive ET fluxes 48 

through land surface models (LSMs), but is not an explicit input to the USDM. Further, nowhere 49 

in the USDM is E0 directly used in a physically comprehensive format—i.e., one that integrates 50 

both radiative and advective drivers. Instead, simple formulations based on Tair alone are used: 51 

the Palmer Drought Severity Index (PDSI; Palmer 1965) employs a Thornthwaite-like Tair-based 52 

E0 (Thornthwaite 1948); the “leaky bucket” CPC soil moisture model uses the Tair-based 53 

Hargreaves reference ET (Hargreaves and Samani 1985). However, the choice of E0 formulation 54 

for bucket models significantly affects both the magnitude and direction of short- and long-term 55 

trends in estimated ET and SM, particularly in energy-limited areas. All else equal, Tair-based E0 56 

measures show declines in long-term ET (i.e., drying) as Tair rises (Dai et al. 2004)—in 57 

opposition to worldwide (and CONUS) observed trends (Hobbins et al. 2004; Roderick et al. 58 

2009). Furthermore, a number of studies show that Tair is often not the most significant driver of 59 
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long-term E0 trends (e.g., Roderick et al. 2007). For example, while the short-term (daily) 60 

variability of E0 during the critical growing season is dominated by Tair over most of CONUS, it 61 

is notably most strongly influenced by 2-m wind speed (U2) in the southwest and downwelling 62 

shortwave radiation (Rd) in the southeast (Hobbins et al. 2012; Hobbins 2015). Arguably, more 63 

physically explicit E0 formulations will more accurately reflect observations of both wetting and 64 

drying under warming (Hobbins et al. 2008; Sheffield et al. 2012). 65 

Several emerging drought indices are predicated on the drought signal of physically based 66 

ET [e.g., the Soil Moisture Deficit Index (SMDI) and Evapotranspiration Deficit Index (ETDI) 67 

of Narasimhan and Srinivasan (2005); the Standardised Precipitation Evapotranspiration Index 68 

(SPEI) of Vicente-Serrano et al. (2010); the Evapotranspiration Stress Index (ESI) of Anderson 69 

et al. (2007); the Remotely Sensed Global Drought Severity Index of Mu et al. (2013); and the 70 

Optimal Blended NLDAS Drought Index of Xia et al. (2014)]. They generally rely on a 71 

combination of land-based and remotely sensed data and, as such, are data- and/or 72 

computationally intensive and can have significant latencies (e.g., due to inter-satellite overpass 73 

periods). However, while E0 could be a flexible driver in drought monitoring—it may be 74 

remotely sensed, land-based, or physically observed, and it does not rely on LSMs—no existing 75 

indices relate to E0 alone. An index based solely on a physically based E0 measure has several 76 

advantages: characterization of the surface water availability is obviated, as are difficulties 77 

intrinsic to remotely sensed data streams such as delays and the requisite infilling of data due to 78 

satellite-overpass intervals or cloud cover. Such an index could help fill a gap between science 79 

and applications, in that it is operationally tractable for detecting and monitoring both flash and 80 

sustained droughts, with negligible latency. 81 
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Depending on whether ET is limited by the availability of energy or of water, E0 either plays 82 

a role in determining ET or else is reflective of ET. In non-water limited conditions, E0 estimates 83 

the upper limit of (energy-limited) ET, whereas in water-limited conditions, land-atmosphere 84 

feedbacks generated from ET force in E0 in a complementary direction. Clearly, in sustained 85 

drought (i.e., sustained deficits in SM and associated fluxes at the land-atmosphere interface), the 86 

water limit applies to ET. This is less often true, however, in the case of “flash drought” (i.e., a 87 

fast-developing drought driven by strong, transient increases in Tair, humidity, wind, or radiation) 88 

with no substantive change in Prcp). Nonetheless, the positive E0 signal manifested in both 89 

sustained and flash droughts suggests that E0 has value both for monitoring droughts and as a 90 

leading indicator of developing drought conditions. 91 

In this paper, we offer a physical rationale for an E0-based drought index and propose an 92 

index formulation, termed the Evaporative Demand Drought Index (EDDI). The performance of 93 

EDDI is assessed across CONUS in a companion paper (McEvoy et al. - this issue). This paper 94 

develops the theoretical basis of EDDI and demonstrates how the E0 connection to drought 95 

makes it not only a useful drought metric but also provides for drought attribution by providing a 96 

decomposition of drought evolution to its separate meteorological forcings. We compare EDDI 97 

with drought indices based on ET and the USDM in case studies of flash and sustained droughts, 98 

in basins drawn from across CONUS’s hydroclimatic spectrum (see Figure 1). We also examine 99 

EDDI’s long-term performance as a leading drought indicator, and close with discussion and 100 

conclusions that motivate the companion paper (McEvoy et al. - this issue). 101 

< Figure 1 here >  102 
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2. Physical rationale for E0-based drought indicator 103 

The complementary and parallel interactions of ET and E0 in both sustained and flash 104 

droughts form the physical basis for EDDI. Drought links to E0 from one of two dynamics, 105 

depending on the prevailing hydroclimate. In the first, under moist, energy-limited ET 106 

conditions, variations in surface energy Qn (the sum of the fluxes of sensible heat H and latent 107 

heat λET to the atmosphere) cause both ET and E0 to vary proportionally to Qn. Second, under 108 

water-limited ET conditions, variability in ET drives a complementary variability in E0 through 109 

energetic interactions across the land-atmosphere interface. This is known as the 110 

“complementary relationship” (Bouchet 1963): when ET becomes water-limited, Qn is re-111 

partitioned to favor sensible heat H over λET. The increased H raises the vapor pressure deficit 112 

of the dynamic boundary layer and thereby increases E0. In its simplest expression: 113 

 !" = !!! − !! (1) 114 

where Ew is the ET rate for a regional-scale wet surface. Often, k is assumed to be 2, implying 115 

that the energy released at the surface by declining λET is reapportioned to H and raises E0 by as 116 

much as λET falls. Others have shown that k may fall into the range 2-5 [e.g., Pettijohn and 117 

Salvucci (2009); Szilagyi (2007)], but the particular value of k is not functionally important to 118 

the performance of EDDI. Figure 2 demonstrates the general complementary relationship by 119 

paired black lines; the colored lines indicate changes from the general relation due to the two 120 

different drought dynamics discussed. 121 

< Figure 2 here > 122 

The two dynamics illustrated in Figure 1—i.e., parallel and complementary ET/E0 123 

variations—have been observed acting across CONUS. Indeed, Hobbins et al. (2004) revealed 124 
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that trends in the driving dynamics of E0 and ET lead to trends in ET that corroborate both 125 

complementary and parallel ET/E0 variations. 126 

Observations of both dynamics can be used to indicate droughts of various types. In flash 127 

drought, moisture changes lag behind changes in meteorologic drivers (increasing Rd, for 128 

example), causing a transient period during which SM changes slowly, and moisture is still 129 

available, while the energy to drive evaporation increases – causing rises in both λET and λE0 130 

(blue curves in Figure 2a). Mo and Lettenmaier (2015) refer to this type of drought as a “heat 131 

wave flash drought” (as distinct from flash droughts driven by rapid Prcp declines) and define it 132 

as driven by high Tair; we maintain that these droughts may also be driven by the other E0 drivers 133 

(e.g., low q, high Rd or U2). Whatever the meteorological or radiative forcing, eventually, 134 

increased ET decreases the water available for Runoff and depletes SM, leading to both 135 

hydrologic and agricultural drought. This time lag in the evaporative signal is short-circuited by 136 

use of E0 anomalies (ΔE0), which shows the potential changes in the moisture situation before 137 

they appear in moisture-related measurements. 138 

In a sustained drought, ET falls in response to limited moisture supply (and follows arrow 1 139 

in Figure 2b). Holding all else equal, Qn favors increasing H, which heats the dynamic boundary 140 

layer and raises its vapor pressure deficit, thereby increasing λE0 (arrow 2 in Figure 2b). As 141 

droughts persist, regional cloudiness decreases and Rd (or Qn) increases. This dynamic between 142 

regional ET and E0 is the classical understanding of the complementary relationship. 143 

That E0 should increase in both flash droughts and sustained drought whereas ET responds in 144 

opposite directions in these two drought types demonstrates an advantage of EDDI over ET-145 

based drought indices: i.e., ET increases under flash drought initiation, making them insensitive 146 

to the onset of such conditions. Central to this study, then, is the concept that, during both flash 147 
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droughts and sustained droughts, E0 should demonstrate a surplus relative to its climatological 148 

mean. As the drought progresses, this surplus should accumulate, dissipating only when moisture 149 

availability or meteorologic and/or radiative forcings at the surface returns to or above their 150 

climatological level for some sustained period. 151 

3. Methods and Data 152 

3.1 E0 from ASCE Standardized Reference ET Equation 153 

For E0 we use the ASCE Standardized Reference ET (ET0) formulation (Allen et al. 2005), 154 

which provides a widely accepted estimate of E0. ASCE ET0 is derived from the Penman-155 

Monteith equation (Monteith 1965), which synthesizes ET0 as a weighted combination of 156 

radiative and advective factors. In particular, ET0 is function of Tair, net radiation Rn at the 157 

surface, ground heat flux G, 2-m wind speed U2, saturated vapor pressure esat and actual vapor 158 

pressure ea. Reference conditions are assumed to be a well-watered 0.5-m alfalfa crop, 159 

completely shading the ground with an albedo of 0.23, though one could also use the 0.12-m 160 

grass reference crop. 161 

3.2 Data sources 162 

For the CONUS-wide reanalysis of ET0, daily inputs are aggregated from the following 163 

hourly fields from the North American Land Data Assimilation System phase-2 [NLDAS-2; 164 

Mitchell et al. (2004)]: 2-m Tair (K), 2-m specific humidity q (kg kg-1), station pressure Pa (Pa), 165 

downwelling shortwave radiation Rd (W m-2), and the two orthogonal horizontal 10-m wind 166 

vectors Ux and Uy (m sec-1). These data are available from January 1, 1979, to within five days of 167 

the present, at a 0.125° spatial resolution (roughly 12 km). 168 
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Data sources used for the comparison of EDDI against other basinwide fluxes, states, and 169 

indices are as follows: Prcp is extracted from the Parameter Regressions on Independent Slopes 170 

Model [PRISM; Daly et al. (1994)]; Runoff data are from USGS data sources for hydrologically 171 

undisturbed basins in the Hydroclimatic Data Network [HCDN; Slack and Landwehr (1992)]; 172 

SM is available from the Variable Infiltration Capacity [VIC; Liang et al. (1994)] LSM driven by 173 

NLDAS-2 forcings; ET is from ALEXI (Anderson et al. 1997). We also use the ALEXI-derived 174 

Evaporative Stress Index (ESI) from Anderson et al. (2007), defined as !"# = !"/!!, as another 175 

evaporative drought index to which we compare EDDI. 176 

To validate EDDI we use, amongst other measures, the USDM, the de facto operational 177 

drought-monitoring tool in the United States (US). The USDM is a composite drought indicator, 178 

published weekly since January 4, 2000, by the National Drought Mitigation Center (NDMC; 179 

http://droughtmonitor.unl.edu/) at the University of Nebraska-Lincoln, the US Department of 180 

Agriculture, and the National Oceanic and Atmospheric Administration (NOAA), in an attempt 181 

to capture drought intensity, duration, spatial extent and probability of occurrence, while 182 

identifying specific drought types (e.g., hydrologic vs. agricultural). The USDM depends heavily 183 

on the Tair-dependent PDSI, while also surveying a range of other inputs that include ET data 184 

(such as ALEXI), and has long been influential across sectors and stakeholder types with respect 185 

to drought-response decision-making. Though not completely objective (it incorporates local 186 

expert knowledge), it currently serves as the best available benchmark for much drought 187 

monitoring research. 188 

3.3 Preliminary Evaporative Demand Drought Index definition 189 

EDDI is formulated as a standardized Z-index, which first aggregates a departure of ET0 190 

from the climatologic mean for a given period of interest, or “aggregation period” t, and 191 
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normalizing it by the climatologic (30-year) standard deviation of daily ET0 totals aggregated 192 

over the same period, as follows: 193 

!""#! =
!"!!!!"!!
!!"!!

. (2) 194 

in which !"!! is the daily ET0 summed over the aggregation period t within the year of interest; 195 

!"!! is the mean of !"!! across N years (here N=30: 1981-2010) of the climatology, and !!"!!  is 196 

its standard deviation of !"!!. 197 

An alternate formulation of EDDI would be to use a distribution fit of the yearly timeseries 198 

of !"!! together with a normal quantile transform to estimate normal deviates that provide the 199 

index values. This approach is taken with the Standardized Precipitaiton Index [SPI; McKee et 200 

al. (1993)] and Standardized Runoff Index [SRI; Shukla and Wood (2008)], both of which rely 201 

on a gamma distribution. The distribution approach is especially suitable for variables with 202 

skewed and/or bounded distributions, and would likely be appropriate for the EDDI, especially at 203 

shorter timescales. The best choice for the EDDI will depend on the hydroclimate to which 204 

EDDI is applied. 205 

A zero EDDI value indicates that no anomaly in ET0 has accumulated over the aggregation 206 

period in the year of interest; negative values indicate wet anomalies; positive EDDI indicates 207 

drier than normal conditions, thus drought intensity increases with increasingly positive EDDI. 208 

EDDI is multi-scalar in space and time: it may be estimated at a point (or pixel) or by using 209 

regional-mean ET0 over a region; and aggregation periods may vary from as little as one day to a 210 

year or more, similar to other multi-scalar drought indices such as the SPI and SRI. These 211 

periods would be selected as appropriate to the regional hydroclimatology, sector, user interest, 212 

and other criteria (see Section 4.3). 213 
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4. Results 214 

The results to follow demonstrate the underlying principles of EDDI and its relevance to 215 

drought. Accordingly, the following sub-sections: (1) illustrate the complementary and parallel 216 

interactions of ET and E0 and the E0 linkage to the water balance; (2) examine how the drivers of 217 

E0 perform under a flash drought and during an in-drought wetting period; (3) demonstrate the 218 

multi-scalar, early warning utility of EDDI and offer suggestions on selecting an aggregation 219 

window; and (4) demonstrate the consistency of EDDI with other drought indices and monitors. 220 

4.1 Complementary and parallel evaporative dynamics 221 

The drought-related behaviors of E0, ET, and other hydrologic states, fluxes and E0-drivers 222 

are illustrated using droughts in two river basins – the Russian River basin, which is in northern, 223 

coastal California; and the Allegheny River basin, in western Pennsylvania. These basins were 224 

chosen in order to represent a variety of hydrologic responses to drought resulting from their 225 

differences in hydroclimate, size, topography, and vegetation. The Russian River basin (260 km2, 226 

100 mi2) has a Mediterranean climate with a distinct wet, winter season (80% of Prcp falls from 227 

November to March period) and a hot, dry summer season. The Allegheny River basin (29,550 228 

km2, 11,410 mi2) has a humid continental climate with warm summers and cold winters (with 229 

over 1000 mm of snow), and compared to the Russian River basin, a greater annual Tair range but 230 

much less marked Prcp seasonality (though with a slight summer maximum). 231 

In both basins, we calculate the inter-correlations at the monthly and annual time-scales 232 

between basin-averaged ET0 and water balance variables Prcp, Runoff and SM (Table 1). 233 

Monthly data were deseasonalized so as not to artificially inflate the correlations by including 234 

intra-annual cycles. Table 1 shows that at both time scales, and in both basins, ET0 is more 235 
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strongly linked to the hydrologic cycle than ET. For both basins, Prcp, Runoff and SM are, 236 

unsurprisingly, strongly inter-related at the annual scale, while at the monthly scale, these 237 

relationships vary between basins. In the Russian River basin, the ET0-SM correlation is higher 238 

(R2 = 83%) than for any other variable pairs, and it is also one of the strongest correlations at the 239 

monthly timescale (34%). SM does not correlate at all with monthly ET. In fact, ET correlates 240 

weakly with all other water balance components at the monthly time scale (its highest correlation 241 

is with ET0 at 9.5%; all others are below 5%). Across the larger Allegheny River basin, water 242 

balance correlations involving ET and ET0 are both relatively weak, again with the exception of 243 

annual ET0-SM (48%), although even at the monthly timescale SM is more strongly correlated to 244 

ET0 (25%) than to ET (1.4%). 245 

< Table 1 here > 246 

Figure 3 portrays the two ET-ET0 regimes previously described—parallel and 247 

complementary—and shows the extent to which complementarity holds in the two basins. In 248 

general, the relationship holds well in the Russian River basin (CA), but poorly in the Allegheny 249 

River basin (PA). ET and ET0 are shown as a function of water availability (represented by 250 

monthly Prcp plus mean monthly SM). Though not non-dimensional [which is preferred by 251 

Kahler and Brutsaert (2006)], the complementarity patterns are usefully expressed. 252 

For the Russian River (Figure 3a-b), in both wet and dry seasons, ET0 declines with 253 

increasing Prcp—indicating the effects of extra cloudiness, lower irradiance and sensible heating 254 

of the dynamic boundary layer from the surface, in favor of higher latent heat flux (λET). The 255 

complementarity is particularly strong during the drier, moisture-limited summer months, when 256 

ET becomes water limited and declines while ET0 increases with energy availability. In contrast, 257 

during the high-Prcp winter periods (January to May), water is available for ET (Figure 3a), ET 258 



!
 

13!

is energy-limited and increases in line with increasing energy availability (and hence with ET0). 259 

Thus, both parallel (November to March) and complementary (May to September) ET-ET0 260 

interactions occur within the year. At annual time scales (not shown) these moisture and energy 261 

differences average out and the overall ET-ET0 complementarity becomes more evident. 262 

Across the Allegheny River basin (Figure 3c-d), on the other hand, ET-ET0 complementarity 263 

is not evident in either wet or dry periods. This may be due to the fact that the greater water 264 

storage can mediate the meteorological and radiative variations that drive ET0 variability, even at 265 

seasonal time scales, leaving moisture for sustained ET long after ET0 conditions might indicate 266 

otherwise, and leading to a weaker coupling between the land surface and the atmosphere at 267 

shorter time scales. The effects of this regional variation in coupling strength on the performance 268 

of EDDI are examined in more detail in the companion paper (McEvoy et al. - this issue). 269 

< Figure 3 here > 270 

In Figure 4, which demonstrates as time series the 14-year development of various water 271 

balance components for the Russian River basin, data are accumulated (or averaged, for SM) 272 

across a 12-month moving window that steps monthly. The parallel responses of SM and Runoff 273 

to Prcp are immediately clear. To a lesser degree, ET also tracks Prcp well, increasing during the 274 

highest Prcp periods of 2002-2007 and 2010-2012. However, ET does not only vary in response 275 

to the availability of water (from Prcp and SM) but also of energy (as reflected in ET0). During 276 

water-limited periods when there is enough energy available to evaporate moisture, ET and ET0 277 

vary in a complementary fashion (Figure 4 periods 1, 3 and 5). During energy-limited periods 278 

when there is enough moisture to evaporate at prevailing energy conditions, ET and ET0 vary in 279 

a parallel fashion (Figure 4 periods 2, 4 and 6). 280 

< Figure 4 here > 281 
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4.2 Decomposing drought evaporative dynamics 282 

It is instructive to explore how variations of components of E0—Tair, q, Rd, and U10—relate 283 

to E0 and EDDI under varying conditions of drought, and to decompose and attribute the 284 

evaporative signature of drought to its meteorologic drivers. Variations in our E0 metric 285 

accumulate as a function of both the anomalies in these driving variables and the sensitivities of 286 

E0 to them, as follows: 287 

∆!! = !!!
!! ∆! + !

!!!
!!!

∆!! + !!!!!! ∆! + !
!!!
!!!"

∆!!". (3) 288 

Each term on the RHS represents the contribution to the surplus in E0 by each driving 289 

variable (for analytical solutions to the derivatives and a CONUS-wide assessment, see Hobbins 290 

2015). Which terms dominate variations in E0 has been shown across CONUS and seasons for 291 

synthetic pan evaporation in Hobbins et al. (2012) and in Hobbins (2015) for ASCE ET0. Clearly 292 

these variations combine to determine the variability of the evaporative drivers and responses of 293 

drought. These terms give insight into the meteorological factors contributing to the flash 294 

drought and into whether the ET0 analysis (and EDDI) provides advance warning. In Figure 5a, 295 

for example, the E0 signal of a period of flash drought is related to its driving variables using 296 

Eqn. (3) at a two-week aggregation period for the calendar year 2012 to summer 2013 in the 297 

Current River basin in southern Missouri. The drought period is portrayed by the USDM (Figure 298 

5b) starting in May but rapidly deepening through June to peak intensity in August, before 299 

abating. The top panel of Figure 5a tracks the two-week anomalies (ΔET0) and the contributions 300 

to ΔET0 of each of the four drivers (∆!!"# . ∂!! ∂!!"# for Tair, similarly for q, Rd, and U2), in mm 301 

depths accumulated across a two-week period stepping daily. In the lower five panels, daily ET0 302 

and its four drivers throughout the year are also plotted with their 30-year (1981-2010) daily 303 

means for comparison. Tair and q make the largest contributions to ΔET0 from their own 304 
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anomalies: with the majority of Tair’s contributions to ΔET0 being positive, and q’s being 305 

negative until late-May and positive thereafter. The contribution from high U2 is small by 306 

comparison (though always positive) until early June, when it climbs to 10-20 mm until late-307 

October, coinciding with the intensification of drought conditions. This is confirmed by the daily 308 

U2 trace, which is generally above normal from June to September. Although Rd is often above 309 

normal, ET0’s minimal sensitivity to Rd in this region [see Hobbins (2015)] results in it making 310 

little contribution to ΔET0 across the year. 311 

< Figure 5 here > 312 

We note that the contribution from the above-normal Tair early in the year is largely mediated 313 

by above-normal q, leaving ΔET0 near zero after February. In March and April both Tair and q 314 

spike well above their normal, with q making a negative contribution of almost -60 mm to ΔET0 315 

but Tair making a positive contribution of 60 mm and combining with U2 contributions to steadily 316 

increase ΔET0 (and so increase EDDI). In late-May, the anomaly in q switches signs and 317 

combines with the still positive Tair anomaly, leading ΔET0 to climb rapidy, to a two-week 318 

surplus in early July of 80 mm. This is recorded by the USDM as a “flash drought” or a sudden 319 

increase in USDM drought category across the basin. The event was to some extent 320 

foreshadowed in the previous months by a high EDDI, leading up to an EDDI peak at nearly 10 321 

(i.e., ~10 stdevs above the mean); as shown in Figure 5b, the short-term EDDI peaks 322 

approximately one month before the USDM reported a maximum drought intensity (D4 drought 323 

category). 324 

The rapid return to near-normal conditions for ET0 in late July is driven by a rapid return to 325 

near-normal Tair and q combined with a sudden negative anomaly in U2. However, these 326 

conditions last for only a few weeks before the drivers return to severe drought conditions and 327 
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the ET0 surplus peaks again, and then extends throughout the rest of the summer into the fall. In 328 

late-October, all drivers have returned to near-normal conditions and, as metered by short-term 329 

EDDI, the drought is significantly ameliorated and eliminated early in the following year. 330 

Considering these results, it is possible that the ET0 and two-week EDDI presaged drought in 331 

early March; yet is is unclear whether the high EDDI conditions in the spring were a necessary 332 

table-setting for the descent into drought later. Certainly variation in the drivers of EDDI just 333 

before and during the event were consistent with drought, and the physical framework for 334 

decomposing E0 provides insight into proximate factors influencing the drought. For more detail 335 

on this event and EDDI’s ability to provide early warning, see the companion paper (Figures 6 336 

and 7; McEvoy et al. - this issue). 337 

A contrasting case is provided by the E0 behavior during a significant within-drought wetting 338 

event in the Russian River basin in Sonoma County. From November 28 to December 21, the 339 

most intense period of the 2011-current California drought, an atmospheric river (AR) made 340 

landfall across Northern California. Three pulses of rain were recorded at Santa Rosa Airport 341 

(station KSTS): 107 mm (4.23 in) from 28 November to 5 December; 162 mm (6.39 in) during 342 

10-12 December; and 127 mm (5.01 in) from 15-20 December. As shown in Figure 6, the 343 

wetting signal is evident in short-term (1-week) EDDI and in ET0 and its contributing inputs. 344 

< Figure 6 here > 345 

The three Prcp pulses are more clearly resolvable as individual ET0 declines in its daily 346 

timeseries (third panel of Figure 6a) than as ΔET0 declines (top panel) due to the 1-week memory 347 

mediating such immediate responses in the latter. There is a significant decline in EDDI over the 348 

entire period as the wetting event progresses, forced primarily by a positive q anomaly driving 349 

ET0 downward for all but the last day of the period. This negative q-forcing counteracts the 350 
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combined effects of the period-long positive Tair and Rd anomalies after December 5 and 351 

elevated U2 from December 3-18 typical of AR landfall events, which all act to raise ET0. The 352 

contrasting effects of drivers acting at different periods across the event combined to generate a 353 

noisy ET0 signal that was nonetheless ultimately downward. The maps reflect the very different 354 

time frames at which the USDM and 1-week EDDI operate. The 1-week EDDI oscillates rapidly 355 

between dry and wetter conditions as the pulses of moisture impact the region, whereas the 356 

USDM varies little in response, only decreasing by a single drought category in northern CA 357 

alone. As shown by Figure 6b, the short-range integration EDDI reflects mainly the transient 358 

weather-scale signals; however EDDI at this time scale remains unsuitable for drought 359 

characterization, which for purposes of long-term impacts (such as low reservoirs) would be 360 

better served by simultaneously estimating EDDI at a monthly or longer scale. The multi-scalar 361 

property of EDDI is addressed in Section 4.3. 362 

4.3 EDDI as a multi-scalar, leading indicator 363 

Following the SPI and other drought indices, EDDI is formulated as a multi-scalar metric 364 

from which specific time-aggregated versions can be selected (e.g., from 1 week to 12 months or 365 

longer). Depending on location, certain aggregations can provide a leading indication of drought 366 

development. We illustrate this behavior using two basins—the Current River at Doniphan, MO 367 

(USGS 07068050) and the Colorado River near Cisco, UT (USGS 09180500; hereafter the 368 

“Upper Colorado River basin”)—that differ in size, land cover, topography and hydroclimate. 369 

The Current River basin is a primarily forested (78% by area) basin of only 5,224 km2 located in 370 

the agricultural Midwest, with a mean elevation of 300 m a.s.l. (Slack and Landwehr 1992) and a 371 

rainfall-dominated hydroclimate. The Upper Colorado River drainage is much larger at 61,770 372 

km2 and is far more spatially heterogeneous—typified by the high mountain ranges and sparse 373 
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forests of the central Rocky Mountains, intervening rangeland, and occasional irrigated valleys—374 

and has a snowmelt-dominated hydroclimate. 375 

In each of the two basins, the time evolution of different scalar versions of EDDI are 376 

compared to the USDM analysis over a period of 15 years (Figures 7 and 8, for Current and 377 

Upper Colorado River basins, respectively). By design, the shorter-range EDDIs fluctuate 378 

rapidly while the longer range EDDIs change gradually, and the spread of the various EDDI 379 

traces arises from the drying and wetting EDDI responses on the different time scales. The 380 

figures illustrate that the fast-responding EDDIs offer the most potential for depicting an 381 

impending change in drought condition, but are unreliable for characterizing the severity of an 382 

established drought. Shorter period EDDIs may be particularly useful in smaller basins that 383 

respond rapidly to intense, high-frequency events, such as the Current River (Figure 7). Here, 384 

both the short- and long-time scale EDDI give early warning (with respect to the USDM) of the 385 

two most significant droughts—during 2011 and the flash drought in 2012 (see Figure 5 and 386 

Section 4.2 for more on this drought). For example, the longer-term EDDI traces increase 387 

approximately six months in advance of the USDM’s 2011 drought. Further, observe that while 388 

the USDM distinguishes between these two droughts, both long- and short-term EDDI remain 389 

elevated between them, indicating that, despite the USDM reporting that the 2011 drought has 390 

ended, the extra information contained in the EDDI index shows that at no time scales have 391 

evaporative conditions returned to normal, setting the stage for a rapid re-emergence of drought 392 

in 2012. 393 

< Figure 7 and Figure 8 here > 394 

Longer time scale EDDIs may more usefully capture the slower response of larger basins or 395 

those with significant snowmelt-lagged hydroclimates, such as the Upper Colorado River basin 396 
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(Figure 8). Here the short-range EDDIs appear to have little relationship to drought variations, 397 

indicating a mis-match between these time scales and the basin’s spatial scale and/or snowmelt-398 

dominated hydroclimatology. On the other hand, the longer timescale EDDIs appear to offer 399 

early warning information: not only do many of the monthly EDDIs start increasing well in 400 

advance of the USDM registering drought onset (see 2001, 2007, 2008, 2010, and 2015), but 401 

they remain elevated in inter-drought periods as indicated by the USDM (see 2011) and, for 402 

ongoing droughts (again indicating the extra information contained in the EDDI index that is as 403 

yet missing from the USDM), also show both increasing severity (see 2002, 2005, and 2012) and 404 

amelioration (see 2013 to 2014). 405 

Overall, the multi-weekly and monthly-to-seasonal EDDI are likely be of the most use, but 406 

the best aggregation period to provide leading or ongoing information about drought depends on 407 

the hydroclimatology of the region of interest, and on users’ sector-specific needs. The 408 

correlation analysis of Figure 6 provides a useful diagnostic approach for selecting an optimal 409 

window size. The correlation surface shows the association between EDDI and USDM for 410 

aggregation period-lengths varying from 1-12 weeks and 1-12 months, for various lag and lead 411 

times between the two time series, for four hydroclimatically different basins. To the right of the 412 

vertical dashed line at 0-lag, EDDI leads USDM. 413 

< Figure 9 here > 414 

The correlation surfaces differ between basins due to their hydroclimates. For example, in the 415 

Upper Colorado River basin, the 10- to 12-month optimal aggregation period yields a lead-time 416 

over the USDM of up to four months, while there is little association between EDDI and USDM 417 

at the shorter one- to three-weekly aggregation periods. The long lead time and aggregation 418 

periods is related to the significant lagged influence of snowpack on river flow anomalies. Dry 419 
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climate anomalies in the snow accumulation period are reflected in the EDDI signal but may be 420 

only be reflected in the USDM signal in the following growing/irrigation season. In contrast, in 421 

the Apalachicola River basin, which has little to no snow, the greatest information content in 422 

short-term EDDI is for a three-week aggregation period, which leads the USDM signal by 12 423 

weeks. 424 

A distinct characteristic of the correlation surfaces is that, at longer aggregation periods, the 425 

USDM appears to lead EDDI—observe the “leaning” of the correlation space towards the left at 426 

longer EDDI aggregation periods. This is most likely due to the nature of the USDM, which is a 427 

blend of non-physical inputs (such as expert local knowledge) and physical inputs at a variety of 428 

time-scales. Many of these physical inputs will be at shorter time scales than long-term EDDI, 429 

and will therefore be more reactive to short-term transient meteorological and/or radiative 430 

forcings than the EDDI, which reacts more slowly due to its long memory. This hypothesis bears 431 

further investigation but, overall, the shape of the correlation surfaces do appear to favor EDDI 432 

as a leading indicator of the USDM at EDDI aggregations of period-lengths below a threshold 433 

that depends on the basin. 434 

4.4 Consistency of EDDI with other drought measures 435 

To demonstrate the consistency of EDDI with other drought metrics, Figure 10 compares the 436 

3-month EDDI (Figure 10b) with the USDM (Figure 10a), the VIC-modeled soil moisture 437 

percentiles (Figure 10c) from the Surface Water Monitor (Wood 2008), and the ESI (Figure 10d) 438 

from ALEXI (Anderson et al. 2007) for the same date—August 1, 2002, during a significant 439 

drought event over much of western CONUS. All four drought measures indicate drought via the 440 

drier than normal conditions across most of the western states (the exception being much of 441 

WA), centered on the Four Corners region and the Central High Plains; also, to a lesser degree, 442 
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in the mid-Atlantic states. Examination of EDDI at other time scales (not shown) indicates that at 443 

this date, the drought on the East Coast is becoming less intense, while that in the Southwest and 444 

Central High Plains is at peak intensity. 445 

< Figure 10 here > 446 

There are nonetheless differences between all measures shown. EDDI shows two lobes of 447 

>95%ile drought (equivalent to the USDM D3 and D4 drought categories) in the Central High 448 

Plains of eastern CO and WY, western KS, and NE, and one to the southwest in AZ, drought is 449 

observed at lesser intensities across almost the entire western US. The eastern seaboard drought 450 

is centered on northern NC, VA, MD, DE, and southern PA and NJ, but extends at lesser 451 

intensities south into SC and north into NY and New England. The USDM agrees with the 452 

configuration of EDDI’s western drought but shows the most intense region of the eastern 453 

drought further south down the Atlantic Seaboard, from GA to MD. The SWM SM map agrees 454 

spatially with the EDDI map although it indicates > 95%ile drought over a larger extent, while it 455 

understates the severity of the eastern seaboard drought relative to EDDI and places its centroid 456 

further south down the coast, in line with the USDM. The ESI matches EDDI the most closely, 457 

indicating almost identical extent and severity of the eastern seaboard drought, and the Central 458 

High Plains lobe of the western drought. However the southwestern lobe of the western drought 459 

is shown as less severe in ESI than in EDDI, and, significantly, severe drought extends north and 460 

east into the Northern High Plains of SD and ND and into MN. Notably, the two evaporatively 461 

based drought indices indicate the greatest agreements as to location and severity of drought. 462 

5. Discussion and conclusions 463 

This paper represents the exploratory study into the physical basis and utility of a drought 464 

index based on evaporative demand alone—the Evaporative Demand Drought Index (EDDI). A 465 
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companion paper (McEvoy et al. - this issue) verifies the performance of EDDI with respect to 466 

other drought metrics across CONUS. The key rationale for EDDI is that E0 reflects drying (and 467 

wetting) anomalies through feedbacks with ET and other water balance components that 468 

implicitly encode moisture availability. We describe ET-E0 inter-relations under various drought 469 

types and observe both complementary and parallel ET-E0 (hence EDDI) interactions operating 470 

in several basin case studies. Having established the E0-drought connection, we decompose the 471 

evaporative drivers of drought dynamics for both a flash drought and a within-drought wetting 472 

event. We illustrate the multi-scale properties of EDDI and its potential to serve as a leading 473 

indicator for drought condition changes. Finally, we use an example to show that the EDDI 474 

depiction of sustained drought is generally consistent with other drought-monitoring metrics. 475 

Our main findings are as follows: 476 

• E0 is more highly correlated with the main hydrologic components of the water balance 477 

than is ET, but complementary and parallel ET-E0 dynamics yield a robust signal in E0 478 

that responds to both dry and wet anomalies across time scales. While the overall ET-ET0 479 

relationship is at first glance weak, this is due to their inter-relationship being both 480 

positive (parallel interactions) and negative (complementary interactions). ET0’s high 481 

correlation with SM underlines both its role as a predictor of meteorologic variability and 482 

moisture availability within the agricultural sector and its potential as a monitor of 483 

agricultural drought. 484 

• The EDDI that converts E0 into a drought index is both easy to compute and, depending 485 

on the forcing variables’ origin, available in near-real time. A significant caveat is that a 486 

physically based E0 measure must be used—not a Tair-based parameterization. 487 
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• EDDI detects both flash and sustained droughts in a manner that is consistent with the 488 

USDM and other SM- and ET-based drought metrics in both pattern and intensity. The 489 

combination of E0’s rise in response to both fast-developing and sustained droughts often 490 

weeks to months prior to the USDM and the driving variables’ relatively low latency—491 

about five days for our NLDAS-based E0—suggest EDDI’s utility in real-time drought 492 

monitoring and as a robust drought leading indicator. 493 

• EDDI’s multi-scalar properties permit different drought-monitoring functionalities as the 494 

signals of various drying dynamics are evident at different time scales: short-term EDDI 495 

may serve as a drought early warning signal, especially in agricultural areas; long-term 496 

EDDI may be useful for water-limited hydrologic drought monitoring. Operational time 497 

frames will vary with hydroclimate, scale, and sector, but their optimization is 498 

straightforward. 499 

This exploratory paper suggests many directions for future research. Beyond EDDI itself, 500 

improvements to the USDM to its treatment of evaporation—currently limited to ET estimation 501 

from LSMs, and physics-poor implementations hidden inside other drought tools—could accrue 502 

by inclusion of the NLDAS-forced E0 reanalysis (the ET0 underpinning EDDI) as a driver of 503 

LSMs and drought indices. Indeed, on time scales pertaining to both ongoing and flash droughts, 504 

using a physically based observed E0 driver that is spatially distributed, well-calibrated, 505 

physically representative, and available on a daily basis with limited latency will enhance 506 

characterization of the evaporative dynamics of ongoing drought, and the resulting EDDI can 507 

provide a perspective that is as yet missing. Potential drought onsets could be identified via high-508 

frequency E0 surpluses using a small aggregation period filter and then verified using a longer 509 

aggregation period filter. Non-standard uses of EDDI are already underway: it is currently in 510 
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experimental use by USFS Southern Research Station in their seasonal forecasts of large fires on 511 

US lands and their suppression costs (Ham et al. 2014). Forecasts of E0 itself—currently 512 

produced at the daily and weekly time scales by the National Weather Service (Snell et al. 2013) 513 

and forthcoming at the seasonal time scale—suggest the possibility of drought forecasting from 514 

the evaporative perspective. Overall, explicating the role of E0 in drought occurrence will deepen 515 

our understanding of water and energy cycle phenomena, thereby improving operational water 516 

management, drought monitoring and prediction, and decision-making in water-dependent 517 

sectors. 518 
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Table 1: Coefficients of determination (R2) for relationships between basin-averaged one-month 630 
(italics) and 12-month (bold) simulated water-balance components for (top) the Russian River 631 
basin, and (bottom) the Allegheny River basin, from January, 2000, to December, 2013. 632 
 633 

Russian River basin ! ! ! !
! ET0 ET Prcp Runoff SM 

ET0 1 0.408 0.361 0.487 0.826 
ET 0.095 1 0.030 0.028 0.380 

Prcp 0.172 0.014 1 0.626 0.635 
Runoff 0.162 0.020 0.619 1 0.652 

SM 0.339 0.041 0.241 0.489 1 
! ! ! ! ! !

Allegheny River basin ! ! ! !
! ET0 ET Prcp Runoff SM 

ET0 1 0.115 0.118 0.273 0.484 
ET 0.059 1 0.000 0.018 0.009 

Prcp 0.072 0.005 1 0.860 0.507 
Runoff 0.064 0.000 0.464 1 0.572 

SM 0.246 0.014 0.247 0.398 1 
  634 
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List of figures: 635 

Figure 1: Location of the five basins used in this study, including NLDAS elevation (m) above 636 

mean sea level. 637 

Figure 2: Idealized responses of ET and E0 to varying moisture and energy conditions: (a) 638 

varying in parallel; and (b) varying in a complementary relationship. 639 

Figure 3: The ET-ET0 relationship in the Russian River basin (CA) during (a) the cool, wet 640 

October-March period, and (b) the warm, dry April-September period, and in the Allegheny 641 

River basin (PA) during (c) the cool October-March period, and (d) the warm April-642 

September period. 643 

Figure 4: Linkages between areally averaged simulated water balance components. Time-series 644 

of basinwide variations in ET0, ET, Runoff, Prcp, and SM for the Russian River basin (CA) 645 

from January, 2010, to December, 2013, with each series mean shown as a horizontal line. 646 

Units for ET0, ET, Prcp, and Runoff are mm year-1; units for SM are mm. Numbered shaded 647 

periods denote periods discussed in the text. 648 

Figure 5: Example of time variations of ΔET0 and its drivers under a flash drought during the 649 

spring and summer of 2012, in the Current River basin (MO). In (a) the top panel shows 2-650 

week time series of ΔET0 (mm) and each driver’s contributions to ΔET0 (mm); lower panels 651 

show daily time series of ET0 (mm d-1), Tair (oC), q (kg kg-1), Rd (W m-2), and U2 (m s-1), 652 

respectively, with daily climatological (1981-2010) mean values in black. In (b) the time 653 

series of drought monitors across the basin are shown for a two-year period 2012-2013 654 

including the flash drought: 1- to 12-weekly EDDI in the top panel; 1- to 12-monthly EDDI 655 

in the middle panel; weekly USDM plotted as percentage of basin in each USDM drought 656 

category in the bottom panel (the full time series is shown in Figure 7). 657 
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Figure 6: Example of time variations of ΔET0 and its drivers under an intra-drought wetting 658 

interval (the landfall of an atmospheric river) from November 28 to December 21, 2014, in 659 

the Russian River basin (CA). In (a) the top panel shows 1-week time series of ΔET0 (mm) 660 

and each driver’s contributions to ΔET0 (mm); lower panels show, in descending order, daily 661 

time series of Prcp (mm, recorded at the Santa Rosa, CA, weather station 047965, located 662 

within the basin), ET0 (mm), Tair (oC), q (kg kg-1), Rd (W m-2), and U2 (m s-1), with daily 663 

climatological (1981-2010) mean values in black. In (b) the progression of drought monitors 664 

is mapped across CA and NV for the same period: USDM on left; 1-week EDDI on right. 665 

Figure 7: Basinwide time variations of multi-weekly and multi-monthly EDDI and USDM for 666 

the entire USDM period (from January 4, 2000 to the present) across the Current River basin 667 

(MO). (Top) is for one- to 12-monthly EDDI; (middle) is for the one- to 12-weekly EDDI; 668 

(bottom) is for weekly USDM. 669 

Figure 8: Basinwide time variations of multi-weekly and multi-monthly EDDI and USDM for 670 

the entire USDM period (from January 4, 2000 to the present) across the Upper Colorado 671 

River basin. (Top) is for one- to 12-monthly EDDI; (middle) is for the one- to 12-weekly 672 

EDDI; (bottom) is for weekly USDM. 673 

Figure 9: Correlations between river basin spatial means of USDM and EDDI. EDDI varies 674 

from 1- to 3-week and 1- to 12-month aggregation periods shown on the ordinate axes, with 675 

lead (lag) times between USDM and EDDI of up to +/- 12 weeks and months (for weekly 676 

and monthly EDDI, respectively), shown on the abscissae. Correlations are indicated by 677 

color: red positive; blue negative. 678 

Figure 10: Comparing representations of drought conditions of mid-summer, 2002: (a) the 679 

USDM on July 30, 2002; (b) the three-month EDDI on July 31, 2002; (c) percentiles of VIC-680 
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modeled soil moisture (SM) from the University of Washington Surface Water Monitor 681 

(Wood 2008) on July 31, 2002; and (d) 12-week ESI (Anderson et al. 2007) on July 29, 682 

2002. 683 



   
 

 

   
Figure 1: Location of the five basins used in this study, including NLDAS elevation (m) above 
mean sea level. 
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Figure 2: Idealized responses of ET and E0 to varying moisture and energy conditions: (a) 
varying in parallel; and (b) varying in a complementary relationship. 
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Figure 3: The ET-ET0 relationship in the Russian River basin (CA) during (a) the cool, wet 
October-March period, and (b) the warm, dry April-September period, and in the Allegheny 
River basin (PA) during (c) the cool October-March period, and (d) the warm April-September 
period. 
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(d) Apr-Sep 

Figure 3
Click here to download Rendered Figure: EDDI_Part_I_Hobbins_et_al - figure 3.pdf 

http://www.editorialmanager.com/amsjhm/download.aspx?id=72509&guid=b6ad4c18-c9d5-4e5e-9e8e-d9a2240c935e&scheme=1


!
 

 
Figure 4: Linkages between areally averaged simulated water balance components. Time-series 
of basinwide variations in ET0, ET, Runoff, Prcp, and SM for the Russian River basin (CA) from 
January, 2010, to December, 2013, with each series mean shown as a horizontal line. Units for 
ET0, ET, Prcp, and Runoff are mm year-1; units for SM are mm. Numbered shaded periods 
denote periods discussed in the text. 
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Figure 5: Example of time variations of ΔET0 and its drivers under a flash drought during the 
spring and summer of 2012, in the Current River basin (MO). In (a) the top panel shows 2-week 
time series of ΔET0 (mm) and each driver’s contributions to ΔET0 (mm); lower panels show 
daily time series of ET0 (mm d-1), Tair (oC), q (kg kg-1), Rd (W m-2), and U2 (m s-1), respectively, 
with daily climatological (1981-2010) mean values in black. In (b) the time series of drought 
monitors across the basin are shown for a two-year period 2012-2013 including the flash 
drought: 1- to 12-weekly EDDI in the top panel; 1- to 12-monthly EDDI in the middle panel; 
weekly USDM plotted as percentage of basin in each USDM drought category in the bottom 
panel (the full time series is shown in Figure 7). 
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Figure 6: Example of time variations of ΔET0 and its drivers under an intra-drought wetting 
interval (the landfall of an atmospheric river) from November 28 to December 21, 2014, in the 
Russian River basin (CA). In (a) the top panel shows 1-week time series of ΔET0 (mm) and each 
driver’s contributions to ΔET0 (mm); lower panels show, in descending order, daily time series 
of Prcp (mm, recorded at the Santa Rosa, CA, weather station 047965, located within the basin), 
ET0 (mm), Tair (oC), q (kg kg-1), Rd (W m-2), and U2 (m s-1), with daily climatological (1981-
2010) mean values in black. In (b) the progression of drought monitors is mapped across CA and 
NV for the same period: USDM on left; 1-week EDDI on right. 
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Figure 7: Basinwide time variations of multi-weekly and multi-monthly EDDI and USDM for the entire USDM period (from January 
4, 2000 to the present) across the Current River basin (MO). (Top) is for one- to 12-monthly EDDI; (middle) is for the one- to 12-
weekly EDDI; (bottom) is for weekly USDM. 
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Figure 8: Basinwide time variations of multi-weekly and multi-monthly EDDI and USDM for the entire USDM period (from January 
4, 2000 to the present) across the Upper Colorado River basin. (Top) is for one- to 12-monthly EDDI; (middle) is for the one- to 12-
weekly EDDI; (bottom) is for weekly USDM. 
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Figure 9: Correlations between river basin spatial means of USDM and EDDI. EDDI varies 
from 1- to 3-week and 1- to 12-month aggregation periods shown on the ordinate axes, with lead 
(lag) times between USDM and EDDI of up to +/- 12 weeks and months (for weekly and 
monthly EDDI, respectively), shown on the abscissae. Correlations are indicated by color: red 
positive; blue negative. 
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Figure 10: Comparing representations of drought conditions of mid-summer, 2002: (a) the 
USDM on July 30, 2002; (b) the three-month EDDI on July 31, 2002; (c) percentiles of VIC-
modeled soil moisture (SM) from the University of Washington Surface Water Monitor (Wood 
2008) on July 31, 2002; and (d) 12-week ESI (Anderson et al. 2007) on July 29, 2002. 
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